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Abstract

We study the time evolution of the quantum uctuations of the axion �eld

for both the QCD axion as well as axions arising in the context of supergrav-

ity and string theories. We explicitly keep track not only of the coherently

oscillating zero momentum mode of the axion but also of the higher non-zero

momentum modes using the full axion potential. The full axion potential

makes possible two kinds of instabilities: spinodal instabilities and paramet-

ric resonance instabilities. The presence of either of these instabilities can

lead to a quasi-exponential increase in the occupation of non-zero momentum

modes and the build-up of the quantum uctuations of the axions. If either

of these becomes a signi�cant e�ect then axions would no longer be a suitable

cold dark matter candidate. First, we check that in Minkowski space the

axion uctuations build up on a timescale of order 102m�1
a (in units where

�h = 1 = c). This timescale is in fact much shorter than the age of the uni-

verse. Our results con�rm the conventional wisdom that these e�ects are not

signi�cant in the setting of an expanding FRW universe and hence axions are

indeed cold dark matter candidates.
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I. INTRODUCTION AND MOTIVATION

Over the years there has been growing evidence that nonbaryonic, cold dark matter
plays an important role in the structure and evolution of the universe ( see, e.g. [1, 2, 3]).
Axions are among the most promising candidates for the non-baryonic cold dark matter of
the universe[4, 5, 6]. The concept of the axion was originally introduced and developed to
solve the strong CP problem of QCD in an appealing and phenomenologically acceptable
way[7]. In these models, axions are pseudo-Goldstone bosons of a U(1) symmetry. After the
advent of supergravity and string theories, it became clear that particles with the properties
of axions were in fact more generic, and that in these theories there could be additional
axion �elds which may play a signi�cant role in the history of the universe (see e.g. [8]).

In this paper, we examine the time evolution of the quantum uctuations of the axion
�eld as it oscillates about the minimum of its potential. The standard picture is that the
axion oscillates coherently in its potential; only the zero-momentummode is important. The
original papers presenting the axion as a dark matter candidate[4, 5, 6] considered simple
estimates of instabilities in the axion �eld that could result in energy being pumped from
the zero mode into higher-momentum modes. If such an e�ect were signi�cant, then it is
possible that the energy stored in the axion �eld would be largely converted to kinetic energy
and subsequently redshifted away. According to the original estimates, these e�ects are not
signi�cant.

However in recent years we have come to realise that there are two kinds of instabilities
occuring in the time evolution of generic mode functions that have the potential of changing
this situation. Thus, either spinodal instabilities[9, 10, 11, 12] or parametric resonance
instabilities[13, 14, 15], if they last for a su�ciently long time, can lead to an explosive
growth of quantum uctuations through the exponential growth of non-zero momemtum
modes. Thus in the light of the recent understanding of the role of these instabilities in
the growth of non-zero momentum modes, it is worthwhile to re-examine the role of the
quantum uctuations of the axion.

In what follows we carefully and quantitatively study the time evolution of both the zero
and non-zero momentum modes of the axion. We are thus able to ascertain the magnitude
of the quantum uctuations of the axion and compare it with the value of the coherently
oscillating axion �eld. We do this both for the QCD axion as well as other axions that
arise in the context of supergravity and string theories. We show that if the axions were
born, lived and died in Minkowski space then there would in fact have been an explosive
growth of quantum uctuations resulting from the quasi-exponential growth of some non-
zero momentummodes of the axion �eld. However, the energy density of axions is diluted by
the expansion of the universe, which implies a decrease in the amplitude of oscillation of the
coherently oscillating zero mode. Since it is this oscillation that drives the instabilities and
the explosive exponential growth of the non-zero modes, it is clear that when the amplitude
of the zero mode falls below some critical value, the instabilities will be shut o� and there
will be no further growth of the uctuations. The issue thus becomes one of the initial
amplitudes and timescales involved.

We now turn to a quantitative analysis of the problem to determine whether there is
enough time to build up the uctuations signi�cantly. In the next section we will describe and
layout the equations that determine the time evolutions of the axion �eld and its uctuations.
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In section 3 we will study and analyze the solution to these equations for (i) the QCD axion
and (ii) other axions arising from supergravity and string theories. In both cases we will
compare the evolution in Minkowski space with the behaviour in an expanding FRW universe
to gain insight into the relative roles of instabilities and the expansion of the universe. Finally
we will conclude by stating the implications of our results and place things in perspective.

II. EVOLUTION EQUATIONS

The derivation of the appropriate evolution equations[27, 28] has been intensively studied
during the past few years by a number of groups [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26]. Here we will summarise the key formulae along the lines presented by Boyanovsky,
de Vega and Holman[29].

In a spatially at FRW cosmology, the metric is

ds2 = dt2 � a2(t)d~x2 : (2.1)

The action and Lagrangian density for the axion �eld � are given by

S =
Z
d4xL (2.2)

L = a3(t)

2
41
2
_�2(~x; t)� 1

2

(~r�(~x; t))2
a(t)2

� V (�(~x; t))

3
5 (2.3)

V (�) = �4

"
1� cos

 
�(~x; t)

fa

!#
; (2.4)

where fa is the axion decay constant and � is related to fa and the axion mass ma via
� = fama. We will be interested in two kinds of axions: the standard QCD axion for
which � = �QCD � 200MeV and fa � 1012GeV, and axions that can arise in the context
of supergravity and string theories, for which we will take � � 1016GeV and fa � MP l �
1019GeV (although the parameters are much less constrained in this case). Axions with these
parameters have been considered earlier in the context of natural ination[30]. Here we will
concentrate on computing the magnitude of the uctuations of the axion �eld compared to
the amplitude of the coherently oscillating zero momentum mode of the axion for general
values of � and fa.

The canonical momentum conjugate to � is

�(~x; t) = a3(t) _�(~x; t) ; (2.5)

and the Hamiltonian becomes

H(t) =
Z
d3x

(
�2

2a3(t)
+
a(t)

2
(~r�)2 + a3(t)V (�)

)
: (2.6)

In the Schr�odinger representation (at an arbitrary �xed time to), the canonical momentum
is represented as

�(~x) = �i �

��(~x)
:
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Wave functionals obey the time dependent functional Schr�odinger equation

i
@	[�; t]

@t
= H	[�; t] : (2.7)

For the systems we'll be interested in it is convenient to work with a functional density
matrix �̂ with matrix elements in the Schr�odinger representation �[�(~:); ~�(~:); t]. Normalizing
the density matrix such that Tr�̂ = 1, the \order parameter" is de�ned as

�(t) =
1




Z
d3xh�(~x; t)i = 1




Z
d3xTr�̂(t)�(~x) ; (2.8)

where 
 is the comoving volume, and the scale factors cancel between the numerator (in the
integral) and the denominator. Note that we have used the fact that the �eld operator does
not evolve in time in this picture. In this paper we will use the terms \order parameter",
\mean value of the �eld" and \zero momentum mode of the �eld" interchangably to refer
to quantity de�ned above. The evolution equations for the order parameter are

d�(t)

dt
=

1

a3(t)


Z
d3x h�(~x; t)i = 1

a3(t)


Z
d3xTr�̂(t)�(~x) =

�(t)

a3(t)
(2.9)

d�(t)

dt
= � 1




Z
d3xa3(t)

*
�V (�)

��(~x)

+
: (2.10)

It is now convenient to write the �eld in the Schr�odinger picture as

�(~x) = �(t) + �(~x; t) (2.11)

h�(~x; t)i = 0 : (2.12)

Expanding the right hand side of (2.10) in powers of �(~x; t) we �nd the e�ective equation of
motion for the order parameter:

d2�(t)

dt2
+ 3

_a(t)

a(t)

d�(t)

dt
+ V 0(�(t)) +

V 000(�(t))

2


Z
d3xh�2(~x; t)i+O(�4) = 0 : (2.13)

where primes stand for derivatives with respect to �. For our case, with V (�) given by (2.4),
we �nd

d2�(t)

dt2
+ 3

_a(t)

a(t)

d�(t)

dt
+
�4

fa
sin

 
�

fa

!"
1 � h�2i

2f2
a

#
+O(�4) = 0 : (2.14)

It is legitimate to neglect the O(�4) and higher terms in this equation as long as h�2ni=f2n
a

remains small. We will assume that this is the case provided h�2i=f2
a remains small. Of

course, if we were to �nd h�2i=f2
a of order 1 at some time, then beyond that time it would

not be legitimate to neglect the higher order terms, and we would need to keep track of
them through some non-perturbative technique such as the Hartree approximation. The
�rst issue to address is if and when h�2i=f2

a ever does become of order 1, and this we can
do while neglecting the O(�4) terms. To do this it is su�cient to consider only the lowest
order terms in h�2i=f2

a .
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In order to follow the time evolution of the uctuations h�2i it is convenient to introduce
mode functions 'k(t) which obey a simple evolution equations:

d2'k

dt2
+ 3

_a

a

d'k

dt
+

2
4~k2
a2

+
�4

fa
cos

 
�

fa

!"
1 � h�2i

2f2
a

#3
5'k = 0 ; (2.15)

where we have dropped the O(�4) and higher terms. In terms of the functions 'k(t) the
initial conditions are taken to be

'k(to) = [a3(to)Wk(to)]
�1=2 (2.16)

_'k(t) jto = i[a�3(to)Wk(to)]
1=2 (2.17)

where Wk(to) = [a�2(to)k2 +m2
0]
1=2. This initial condition corresponds to taking an initial

gaussian wave-packet for the �eld � with a width determined by the parameterm0 which has
the dimensions of mass. The smaller the parameter m0 the more sharply peaked the initial
distribution is around k = 0. Since we are interested in studying the process of building up
the occupation of higher non-zero momentum modes starting o� with essentially only the
zero momentum mode we are interested in the case where m0 is much less than ma. We
have also varied m0 and checked that the rate of the build-up of uctuations is insensitive
to the choice of m0. This is actually so because when the non-zero momentum modes do
grow they do so at an exponential rate and hence any di�erences in the initial occupation
of modes quickly becomes insigni�cant.

The equal time two-point function for the uctuations which we have been denoting by
h�2i can then be expressed as:

h�2i = 1

2

Z
d3k

(2�)3
j 'k(t) j2

2
: (2.18)

Having described the formalism and arrived at the evolution equations for the axion
�elds of interest for us we are now in a position to study the solutions to these evolution
equations. We turn to this in the following section. At this point we point out that there
are some aspects of a similar problem speci�cally in the context of natural ination that are
currently being investigated[31].

III. SOLUTIONS TO THE EVOLUTION EQUATIONS AND ANALYSIS.

To analyze the solutions to the evolution equations we have written down in the previous
section it is convenient to rescale variables into dimensionless ones in the following way:

� =
�

fa
; ma =

�2

fa
; � = mat ; h�2i = h�2i

2f2
a

; �k = �k
p
ma ; q =

k

ma

: (3.1)

In the numerical work that follows we will take two sets of � and fa. For the QCD axion
we will take � ' 200MeV and fa ' 1012GeV, wheras for axions arising in the context of
supergarvity and string theories we will take � ' 1016GeV and fa ' 1019GeV. The rescaled
equations in terms of the dimensionless variables introduced in this section are:
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d2�(� )

d� 2
+ 3

_a(� )

a(� )

d�(� )

d�
+ sin �

h
1 � h�2i

i
= 0 (3.2)

"
d2

d� 2
+ 3

_a(� )

a(� )

d

d�
+

q2

a2(� )
+ cos �

h
1� h�2i

i#
�k(� ) = 0: (3.3)

h�2i =
 
ma

fa

!2
1

8�2

Z
q2dq

j �k(t) j2
2

: (3.4)

We further introduce the dimensionless quantity:

g =

 
ma

fa

!2
1

8�2
: (3.5)

By doing this we completely encode all the various dimensional parameters for the two
di�erent particle physics settings for the two kinds of axions we are interested in into two
di�erent values of the dimensionless parameter g. Thus we now have,

h�2i = g
Z
q2dq

j �k(t) j2
2

: (3.6)

We will study axions and their uctuations in two di�erent space-time settings, in order
to compare the behaviour and gain insight into the physics of the build-up of uctuations.
Thus we will study axions in a radiation dominated expanding universe setting and a static
Minkowski space-time. Both of these situations can be captured by parametrizing the time
evolution of the scale factor as:

a(� ) = ao�
n: (3.7)

We will take ao = 1 and consider the two cases n = 1=2 and n = 0 corresponding to a
radiation dominated (RD) Universe and Minkowski space-time respectively. In addition
to the two di�erent space-time settings, for each space-time setting we study two di�erent
kinds of axions: the QCD axion and axions that arise in the context of supergravity and
string theories. These two di�erent kinds of axions have very di�erent values of � and
fa which enter into the quantity g which arose in the way we rescaled variables into a
dimensionless form. Thus for the QCD axion we take g = 2 � 10�53 and for other axions
arising from supergravity and string theories we take g = 10�14. Then the solutions to the
evolution equations can be displayed in terms of plots of quantities as a function of time. We
have organised these into four �gures: Figure 1 has plots representative of the QCD axion
in a RD universe (n = 1=2; g = 2� 10�53); Figure 2 has plots representative of the QCD
axion in a Minkowski space-time (n = 0; g = 2� 10�53); Figure 3 has plots representative
of supergravity and string theory axions in a RD universe (n = 1=2; g = 10�14); Figure 4
has plots representative of supergravity and string theory axions in a Minkowski space-time
(n = 0; g = 10�14).

For each of these cases above we plot the time evolution of the axion �eld zero momentum
mode (�); and the logarithm of the axion uctuations (log[h�2i]).

By examining the plots we note the following facts:

1. Figures 1a, 1b, 2a and 2b show that axion uctuations are not likely to be important
for the QCD axion.
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2. Figures 1b and 2b show that there is however an important qualitative di�erence
between the behaviour of axion uctuations in an expanding FRW universe compared
with that in Minkowski space.

3. Finally, �gures 3 and 4 highlight the di�erence between the Minkowski space and
the FRW universe behaviour and importance of axion uctuations. In particular, it
shows that for axions arising from string theory and supergravity theories that axion
uctuations would quickly become signi�cant in Minkowski space whereas they would
not be signi�cant in an expanding universe setting.

IV. CONCLUSIONS

In this paper we examined the time evolution of the axion �eld and its quantum uctu-
ations. This was done by keeping track not only of the zero momentum mode of the axion
�eld but also of the higher non-zero momentum modes of the axion. We studied di�erent
kinds of axions: the axion required to solve the strong CP problem in the context of QCD,
as well as other axions that would arise in the context of supergravity and string theories.
Further, we studied the dynamics in two di�erent space-time settings: in Minkowski space
as well as in an expanding radiation dominated FRW universe.

This study was motivated by the recent progress in understanding the important role
of phenomena such as spinodal instabilities and parametric resonance instabilities that can
lead to a rapid build-up of uctuations. Indeed, we found that in Minkowski space axion
uctuations rapidly build up in a quasi-exponential manner. In the expanding universe there
are a few additional factors which we understand through our quantitative analysis. First,
we note that because the axion is a pseudo-Goldstone boson of a compact U(1) symmetry,
the potential for the axion is periodic and hence the displacement from the minimum is
bounded. This limits the initial amplitude of coherent oscillations of the axion. Further,
since the instabilities in the higher momentummodes are driven by the coherent oscillations
of the zero momentummode it is clear that if the amplitude of oscillations drop below some
threshold the instabilities will not get a chance to really take o�. The result of our analysis
is that in fact in an expanding universe quantum uctuations of the axion do not become
signi�cant.

Indeed this result preserves a central piece of axion lore. If the higher non-zero mo-
mentum modes had been signi�cantly occupied and quantum uctuations had not been
negligible then it would not have been accurate to think of axions as oscillating coherently
and axions would not have been a suitable cold dark matter candidate.
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FIGURES

Fig. 1a: Time evolution of the QCD axion zero momentum mode in a radiation-dominated universe.

Fig. 1b: Time evolution of the QCD axion uctuations in a radiation-dominated universe.
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Fig. 2a: Time evolution of the QCD axion zero momentum mode in Minkowski space.

Fig. 2b: Time evolution of the QCD axion uctuations in Minkowski space.
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Fig. 3a. Time evolution of the supergravity and string theory axion zero momentum mode in a radiation-

dominated universe.

Fig. 3b: Time evolution of the supergravity and string theory axion uctuations in a radiation-dominated

universe.
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Fig. 4a: Time evolution of the supergravity and string theory axion zero momentum mode in Minkowski

space.

Fig. 4b: Time evolution of the supergravity and string theory axion uctuations in Minkowski space.
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